
𝑓(𝑥)

𝑥

𝑓(𝑥)

𝑥

Modelling 1
SUMMER TERM 2020

LECTURE 5

Basic Numerical Calculus
Michael Wand · Institut für Informatik · Michael.Wand@uni-mainz.de

Informatik

Institut

für

Overview

Objective

▪ Simple “finite-difference” numerics

▪ Helps understanding the theory

▪ More precision: Interpolation

▪ More sophisticated: “linear ansatz”

▪ Basis for “finite elements”

▪ Monte-Carlo integration

▪ Accuracy mediocre

▪ Suitable for high-dimensional problems

▪ No “aliasing problems” (later chapter)

Approximation of Function Spaces

Parametrization as array of numbers

▪ Sample function 𝑓 on discrete grid

▪ Store sample values

▪ Use this as intuition: ,∑→
𝑑

𝑑𝑥
→

𝑓𝑖−𝑓𝑖−1

ℎ

Differentiation

Discrete Representation

𝑓(𝑥)

Function f

𝑓(𝑥)

Think of this:

neighborhood differences

𝑥

tangent slope

𝑓′(𝑥)

𝑥

𝑓:ℝ → ℝ

𝑓′ 𝑥 = lim
ℎ→0

𝑓 𝑥 + ℎ − 𝑓 𝑥

ℎ

𝑓 = (𝑦1, … , 𝑦𝑛)

𝑓′ 𝑥𝑖 ≈
𝑦𝑖 − 𝑦𝑖−1

ℎ

𝑓′(𝑥𝑖)
𝑦𝑖

𝑦𝑖−1

ต
ℎ

Integration and Differentiation

𝐹 𝑥𝑛 ≈ ℎ ⋅

𝑖=0

𝑛

𝑦𝑖

0

+
+

+

𝑓′ 𝑥𝑛 ≈
𝑦𝑛 − 𝑦𝑛−1

ℎ

𝑥 ↔ 𝑥𝑛0

–

𝑥 ↔ 𝑥𝑛

ต
ℎ

ต
ℎ

Fundamental Theorem of Calculus

𝑑

𝑑𝑥
𝐹 𝑥 = 𝑓 𝑥

discrete:

1

ℎ
ℎ ⋅

𝑖=0

𝑛

𝑦𝑖 − ℎ ⋅

𝑖=0

𝑛−1

𝑦𝑖 = 𝑦𝑛

0 𝑥𝑛

ต
ℎ

𝑥𝑛−1

Integration

Integral

Integral of a function

▪ Function 𝑓:ℝ → ℝ

▪ Integral

න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥

measures signed area under curve

+
+

++ + +
--

𝑓

𝑎 𝑏

Integral

Numerical Approximation

▪ Sum up a series of approximate shapes

▪ (Riemannian) Definition: limit for baseline → zero

▪ Intuition: Sum of numbers in array

Multi-Dimensional Integral

Integration in higher dimensions

▪ Functions 𝑓:ℝ𝑛 → ℝ

▪ Tessellate domain and sum up cuboids

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0

0,2

0,4

0,6

0,8

1

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0

0,2

0,4

0,6

0,8

1

0

0,2

0,4

0,6

0,8

1

1,2

1,4

Surface Integrals

Line / Surface / Volume / Hypervolume Elements

න
𝒮

𝑓 𝐱 𝑑𝐱 = lim
smaller

𝑖=1

𝑛

𝑓 𝐱𝑖 ⋅ 𝐀𝑖

function 𝑓 on surface 𝒮

𝑓: 𝒮 → ℝ

More Precision
(higher consistency order)

Discrete Representation

Recipe: Fit polynomial, then take its (analytic) derivative

𝑓(𝑥)

Quadratic:

neighborhood differences

𝑥

𝑓 = (𝑦1, … , 𝑦𝑛)

𝑓′ 𝑥𝑖 ≈
𝑦𝑖+1 − 𝑦𝑖−1

2ℎ

𝑓′(𝑥𝑖)
𝑦𝑖+1

𝑦𝑖−1

ต
ℎ

𝑓(𝑥)

Linear:

neighborhood differences

𝑥

𝑓 = (𝑦1, … , 𝑦𝑛)

𝑓′ 𝑥𝑖 ≈
𝑦𝑖 − 𝑦𝑖−1

ℎ

𝑓′(𝑥𝑖)
𝑦𝑖

𝑦𝑖−1

ต
ℎ

𝑦𝑖

Integral

Recipe

▪ Same: Fit polynomial locally

▪ Compute its integral (analytically)

▪ Converges more quickly for smooth enough functions

LinearConstant

Consistency Order

Numerical approximation

▪ “has consistency order k”

means

▪ For polynomials of degree k,
the result is exact

▪ For smooth functions, convergence is faster

▪ In non-smooth case, high consistency order can have
adverse effect

▪ Too high order becomes unstable (we’ll see later why)

▪ Stay in the lower single digits

Noisy Data

Differentiation is ill-posed (sensitive)

Estimate derivatives in noisy data

▪ Filter the data first

▪ E.g., running average over neighbors

▪ For example: Gaussian filter kernel

𝑓(𝑥)

Raw Data

Differences of neighbors

𝑥
ต
ℎ

𝑓(𝑥)

Smoothed

Preprocesed by running average

𝑥
ต
ℎ

𝑓′(𝑥𝑖)
𝑦𝑖

𝑦𝑖−1

𝑦𝑖

𝑦𝑖−1

𝑓′(𝑥𝑖)

Linear Ansatz

Approximation of Function Spaces

Parametrization with a linear ansatz

▪ 𝑓 𝑥 =

𝑖=1

𝑑

𝜆𝑖𝑏𝑖 𝑥 →

𝑑

𝑑𝑥
𝑓 𝑥 =

𝑖=1

𝑑

𝜆𝑖𝑏𝑖′ 𝑥

න
Ω

𝑓 𝑥 𝑑𝑥 =

𝑖=1

𝑑

𝜆𝑖න
Ω

𝑏𝑖 𝑥 𝑑𝑥

precompute (often)

precompute (often)

Monte-Carlo Integration

Monte-Carlo Integration

Monte-Carlo integration

▪ Black-box integrator

▪ Easy to code/understand,

▪ Generally poor accuracy

▪ But suitable for high-dimensional problems

▪ Often the only option for large dimension!

▪ No “aliasing problems”

▪ We will need this later (signal processing)

▪ Conceptually interesting / important

▪ “Importance sampling” is in general a useful idea

Numerical Integration

Numerical Integration

▪ Standard (Rieman integral):

▪ Grid in Ω, sum of cuboids

▪ Monte-Carlo:

▪ Random points 𝑥𝑖 ∈ Ω

▪ Compute average × Ω

f

Riemann-sum Monte-Carlointegral

Monte-Carlo Approach
Formally:

න
Ω

𝑓 𝑥 𝑑𝑥 ≈
Ω

𝑛

𝑖=1

𝑛

𝑓(𝑥𝑖)

“primary
estimator“

“secondary
estimator“Sampling

▪ 𝑛 random points
▪ independently chosen (iid)

▪ uniformly distributed on Ω

▪ Expected value is true integral

Question: How good is the estimate?

𝑓(𝑥𝑖)

𝑥𝑖

Quality of the estimate

Law of large numbers

▪ Probability of finite deviations 𝜖 > 0 from expected
value converges to zero

Variance

Var
Ω

𝑛

𝑖=1

𝑛

𝑓(𝑥𝑖) ∈ 𝒪
𝜎2

𝑛

Standard deviation

𝜎 ∈ 𝒪
𝜎

𝑛

Proof

Computing the Variance:

()

()

()

2

2

1 1

2

2

1

2

2

2

| | | |
V a r () V a r ()

| |
V a r () (U n a b h ä n g ig k e i t)

| |
V a r

| | 1
V a r O

n n

i i

i i

n

i

i

f x f x
n n

f x
n

n f
n

f

G G

G

G

n

G

n

= =

=

=

=

=

=

 (Independence)

(remark: here 𝐺 = Ω)

Result

Error estimate

𝜎 ∈ 𝒪
𝜎

𝑛

▪ Quadruple sample size (×4) to half error (1/2)

▪ Typical convergence behavior:

▪ Quick first estimate

▪ Long computation for good (noise-free) result

Does It Make Sense?

When is Monte-Carlo integration useful?

▪ Error depends on variance of primary estimator

▪ Then goes down with sample size

Error is totally independent of

▪ Dimension of Ω

▪ Structure of 𝑓 (discontinuities etc.)

▪ Structure of Ω

▪ Just need to be able to sample it

Higher Dimensions
Classic application domain

▪ High-dimensional integration
domains

▪ Let‘s say, Ω = [0,1]20

Standard Integration

▪ Regular grid, 𝑘20 samples

▪ Don’t even try this...

k subdivisions
per axis

Rieman-sum

Higher Dimensions

Monte-Carlo Approach:

▪ Sample n points

▪ Compute average

▪ Multiply with domain volume

Property

▪ Works if variance is not too large

▪ Dimension irrelevant

n sample points
(irregular)

Example

When is Monte-Carlo integration possible?

General observation

▪ Randomized algorithms are efficient if the
crucial information is easy to find by random trials

optimal –
no variance

moderate variance –
MC-int. possible

large variance –
not efficient

bright spot

intensity
5000 on

1

10000
of the area

Numerical Example

Averaging Samples:

▪ n = 100 samples

▪ Fraction q of the domain with value 0.5/q

▪ Showing multiple pixels

q = 1 q = 0.5 q = 0.1 q = 0.01 q = 0.001 q = 0.0001

Example

Speed of convergence:

▪ Now growing n

▪ Pixel: 50% black / 50% white

▪ Growing sample size

Observation

▪ Large sample size required
before noise becomes invisible

n = 1

n = 10

n = 100

n = 1000

n = 10000

Variance Reduction

𝜎 ∈ 𝒪
𝜎 𝑓

𝑛

Variance Reduction
Two reasons for long compute times

Problem #2
slow convergence of
secondary estimator

Problem #1: Importance Sampling

Problem #2: Stratification

Problem #1
primary estimator
variance

𝜎 ∈ 𝒪
𝜎 𝑓

𝑛

Variance Reduction
Two reasons for long compute times

Problem #2
slow convergence of
secondary estimator

Problem #1: Importance Sampling

Problem #2: Stratification

Problem #1
primary estimator
variance

Importance Sampling

Importance Sampling

▪ Idea: More samples in important regions

▪ Need to weight differently to avoid bias

▪ New estimator

▪ Choose sampling density 𝑝 on Ω

න
Ω

𝑓 𝑥 𝑑𝑥 ≈
1

𝑛

𝑖=1

𝑛
𝑓 𝑥𝑖
𝑝 𝑥𝑖

𝑝 𝑥 > 0 ∀𝑥 ∈ Ω

▪ (Note: Ω factor not required here.)

▪ Sampling density 𝑝 controls importance

How to choose 𝑝?

What is a good importance function?

▪ Idea: Minimize errors

▪ Large values lead to bigger errors

Hypothetical optimum

▪ 𝑝 ~ 𝑓 (zero variance for positive f)

▪ Not practical

▪ Would need to know integral already

In practice

▪ 𝑝 similar to 𝑓

▪ Often: 𝑓 = 𝑔 ⋅ ℎ with known 𝑔. Choose 𝑝 ∼ 𝑔.

Illustrative example

Mainz
New York

6000 km

1m

𝜎 ∈ 𝒪
𝜎 𝑓

𝑛

Variance Reduction
Two reasons for long compute times

Problem #2
slow convergence of
secondary estimator

Problem #1
primary estimator
variance

Problem #1: Importance Sampling

Problem #2: Stratification

Stratification

Problem

▪ Variance of average of iid samples always converges

with 𝒪 𝑛

Hence

▪ Non-independent sampling

▪ Targeting samples

▪ Goal uniform coverage

▪ Divide Ω in regions („strati“)

▪ One sample point per region

Jittered Sampling

Example: „Jittered Grid“

▪ Divide Ω in regular grid

▪ For example: subpixels

▪ Random point per cell

▪ Rest of the algorithm
unchanged

Improved versions

▪ Poisson-disc sampling

▪ Halton sequences

▪ Combination with importance sampling
& adaptive sampling

Consequences

Looking at one pixel

(c.f. Mitchel: „Consequences of Stratified Sampling in Graphics“, Siggraph 96)

Random image

𝒪 𝑛
−
1

2

sharp edge

𝒪 𝑛
−
3

4

smooth image

𝒪 𝑛−1

(Lipschitz-smooth)

Example: sharp boundary

Standard MC-Integration

Stratified 𝑛 = 𝑘2 :

purely random

stratified

k regions,
n = k2

Var
1

𝑛

𝑖=1

𝑛

𝑓 𝑥𝑖 =
1

𝑛
Var 𝑓 𝑥𝑖 ⇒ 𝒪 𝑛−

1
2

Var
1

𝑘2

𝑖=1

𝑛

𝑓 𝑥𝑖

=
1

𝑘4

𝑖=1

𝒪(𝑘)

Var(𝑓(𝑥𝑗𝑖)

≤𝑐 (const.)

+

𝑖=1

𝒪(𝑘2)

Var(𝑓(𝑥𝑗𝑖)

=0

=
1

𝑘3
𝑐 ∈ 𝒪 𝑛−

3
2 ⇒ 𝜎 ∈ 𝒪 𝑛−

3
4

Example

random rays (per pixel) jittered grid

random

jittered grid

Combination

Combination of Stratification & Importance

▪ Varying sampling density

▪ Example:

▪ 1D grid morphed according to distribution function

▪ Tensor product grid (i.e., apply to x and y coordinate)

▪ Adaptive jittering

