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Overview

Objective

▪ Simple “finite-difference” numerics

▪ Helps understanding the theory

▪ More precision: Interpolation

▪ More sophisticated: “linear ansatz”

▪ Basis for “finite elements”

▪ Monte-Carlo integration

▪ Accuracy mediocre

▪ Suitable for high-dimensional problems

▪ No “aliasing problems” (later chapter)



Approximation of Function Spaces

Parametrization as array of numbers

▪ Sample function 𝑓 on discrete grid

▪ Store sample values

▪ Use this as intuition:    ,∑→
𝑑

𝑑𝑥
→
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Differentiation



Discrete Representation

𝑓(𝑥)

Function f

𝑓(𝑥)

Think of this:

neighborhood differences

𝑥

tangent slope

𝑓′(𝑥)

𝑥

𝑓:ℝ → ℝ

𝑓′ 𝑥 = lim
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𝑓 𝑥 + ℎ − 𝑓 𝑥
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ℎ

𝑓′(𝑥𝑖)
𝑦𝑖

𝑦𝑖−1

ต
ℎ



Integration and Differentiation
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Fundamental Theorem of Calculus

𝑑

𝑑𝑥
𝐹 𝑥 = 𝑓 𝑥

discrete:
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ℎ
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Integration



Integral

Integral of a function

▪ Function 𝑓:ℝ → ℝ

▪ Integral

න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥

measures signed area under curve

+
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Integral

Numerical Approximation

▪ Sum up a series of approximate shapes

▪ (Riemannian) Definition: limit for baseline → zero

▪ Intuition: Sum of numbers in array



Multi-Dimensional Integral

Integration in higher dimensions

▪ Functions 𝑓:ℝ𝑛 → ℝ

▪ Tessellate domain and sum up cuboids
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Surface Integrals

Line / Surface / Volume / Hypervolume Elements

න
𝒮

𝑓 𝐱 𝑑𝐱 = lim
smaller



𝑖=1

𝑛

𝑓 𝐱𝑖 ⋅ 𝐀𝑖

function 𝑓 on surface 𝒮

𝑓: 𝒮 → ℝ



More Precision
(higher consistency order)



Discrete Representation

Recipe: Fit polynomial, then take its (analytic) derivative

𝑓(𝑥)

Quadratic:

neighborhood differences

𝑥

𝑓 = (𝑦1, … , 𝑦𝑛)

𝑓′ 𝑥𝑖 ≈
𝑦𝑖+1 − 𝑦𝑖−1
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𝑓(𝑥)

Linear:

neighborhood differences

𝑥

𝑓 = (𝑦1, … , 𝑦𝑛)

𝑓′ 𝑥𝑖 ≈
𝑦𝑖 − 𝑦𝑖−1
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Integral

Recipe

▪ Same: Fit polynomial locally

▪ Compute its integral (analytically)

▪ Converges more quickly for smooth enough functions

LinearConstant



Consistency Order

Numerical approximation 

▪ “has consistency order k”

means

▪ For polynomials of degree k,
the result is exact

▪ For smooth functions, convergence is faster

▪ In non-smooth case, high consistency order can have 
adverse effect

▪ Too high order becomes unstable (we’ll see later why)

▪ Stay in the lower single digits



Noisy Data



Differentiation is ill-posed (sensitive)

Estimate derivatives in noisy data

▪ Filter the data first

▪ E.g., running average over neighbors

▪ For example: Gaussian filter kernel

𝑓(𝑥)

Raw Data

Differences of neighbors

𝑥
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𝑓(𝑥)

Smoothed

Preprocesed by running average
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Linear Ansatz



Approximation of Function Spaces

Parametrization with a linear ansatz

▪ 𝑓 𝑥 =

𝑖=1

𝑑

𝜆𝑖𝑏𝑖 𝑥 →

𝑑

𝑑𝑥
𝑓 𝑥 =

𝑖=1

𝑑

𝜆𝑖𝑏𝑖′ 𝑥

න
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𝑓 𝑥 𝑑𝑥 =

𝑖=1

𝑑

𝜆𝑖න
Ω

𝑏𝑖 𝑥 𝑑𝑥

precompute (often)

precompute (often)



Monte-Carlo Integration



Monte-Carlo Integration

Monte-Carlo integration

▪ Black-box integrator

▪ Easy to code/understand, 

▪ Generally poor accuracy

▪ But suitable for high-dimensional problems

▪ Often the only option for large dimension!

▪ No “aliasing problems”

▪ We will need this later (signal processing)

▪ Conceptually interesting / important

▪ “Importance sampling” is in general a useful idea



Numerical Integration

Numerical Integration

▪ Standard (Rieman integral):

▪ Grid in Ω, sum of cuboids

▪ Monte-Carlo:

▪ Random points 𝑥𝑖 ∈ Ω

▪ Compute average × Ω

f

Riemann-sum Monte-Carlointegral



Monte-Carlo Approach
Formally:

න
Ω

𝑓 𝑥 𝑑𝑥 ≈
Ω

𝑛


𝑖=1

𝑛

𝑓(𝑥𝑖)

“primary
estimator“

“secondary
estimator“Sampling

▪ 𝑛 random points
▪ independently chosen (iid)

▪ uniformly distributed on Ω

▪ Expected value is true integral

Question: How good is the estimate?

𝑓(𝑥𝑖)

𝑥𝑖



Quality of the estimate

Law of large numbers

▪ Probability of finite deviations 𝜖 > 0 from expected 
value converges to zero

Variance

Var
Ω

𝑛


𝑖=1

𝑛

𝑓(𝑥𝑖) ∈ 𝒪
𝜎2

𝑛

Standard deviation

𝜎 ∈ 𝒪
𝜎

𝑛



Proof

Computing the Variance:

( )

( )

( )

2

2

1 1

2

2

1

2

2

2

| | | |
V a r ( ) V a r ( )

| |
V a r ( )       (U n a b h ä n g ig k e i t )

| |
V a r

| | 1
V a r O

n n

i i

i i

n

i

i

f x f x
n n

f x
n

n f
n

f

G G

G

G

n

G

n

= =

=

   
=   

   

=

=

 
=   

 

 

 (Independence)

(remark: here 𝐺 = Ω)



Result

Error estimate

𝜎 ∈ 𝒪
𝜎

𝑛

▪ Quadruple sample size (×4) to half error (1/2)

▪ Typical convergence behavior:

▪ Quick first estimate

▪ Long computation for good (noise-free) result



Does It Make Sense?

When is Monte-Carlo integration useful?

▪ Error depends on variance of primary estimator

▪ Then goes down with sample size

Error is totally independent of

▪ Dimension of Ω

▪ Structure of 𝑓 (discontinuities etc.)

▪ Structure of Ω

▪ Just need to be able to sample it



Higher Dimensions
Classic application domain

▪ High-dimensional integration 
domains 

▪ Let‘s say, Ω = [0,1]20

Standard Integration

▪ Regular grid, 𝑘20 samples

▪ Don’t even try this...

k subdivisions
per axis

Rieman-sum



Higher Dimensions

Monte-Carlo Approach:

▪ Sample n points

▪ Compute average

▪ Multiply with domain volume

Property

▪ Works if variance is not too large

▪ Dimension irrelevant

n sample points
(irregular)



Example

When is Monte-Carlo integration possible?

General observation

▪ Randomized algorithms are efficient if the
crucial information is easy to find by random trials

optimal –
no variance

moderate variance –
MC-int. possible

large variance –
not efficient

bright spot

intensity
5000 on 

1

10000
of the area



Numerical Example

Averaging Samples:

▪ n = 100 samples

▪ Fraction q of the domain with value 0.5/q

▪ Showing multiple pixels

q = 1 q = 0.5 q = 0.1 q = 0.01 q = 0.001 q = 0.0001



Example

Speed of convergence:

▪ Now growing n

▪ Pixel: 50% black / 50% white

▪ Growing sample size

Observation

▪ Large sample size required 
before noise becomes invisible

n = 1

n = 10

n = 100

n = 1000

n = 10000



Variance Reduction



𝜎 ∈ 𝒪
𝜎 𝑓

𝑛

Variance Reduction
Two reasons for long compute times

Problem #2
slow convergence of
secondary estimator

Problem #1: Importance Sampling

Problem #2: Stratification

Problem #1
primary estimator
variance



𝜎 ∈ 𝒪
𝜎 𝑓

𝑛

Variance Reduction
Two reasons for long compute times

Problem #2
slow convergence of
secondary estimator

Problem #1: Importance Sampling

Problem #2: Stratification

Problem #1
primary estimator
variance



Importance Sampling

Importance Sampling

▪ Idea: More samples in important regions

▪ Need to weight differently to avoid bias

▪ New estimator

▪ Choose sampling density 𝑝 on Ω

න
Ω

𝑓 𝑥 𝑑𝑥 ≈
1

𝑛


𝑖=1

𝑛
𝑓 𝑥𝑖
𝑝 𝑥𝑖

𝑝 𝑥 > 0 ∀𝑥 ∈ Ω

▪ (Note: Ω factor not required here.)

▪ Sampling density 𝑝 controls importance



How to choose 𝑝?

What is a good importance function?

▪ Idea: Minimize errors

▪ Large values lead to bigger errors

Hypothetical optimum

▪ 𝑝 ~ 𝑓 (zero variance for positive f )

▪ Not practical

▪ Would need to know integral already

In practice

▪ 𝑝 similar to 𝑓

▪ Often: 𝑓 = 𝑔 ⋅ ℎ with known 𝑔. Choose 𝑝 ∼ 𝑔.



Illustrative example

Mainz
New York

6000 km

1m



𝜎 ∈ 𝒪
𝜎 𝑓

𝑛

Variance Reduction
Two reasons for long compute times

Problem #2
slow convergence of
secondary estimator

Problem #1
primary estimator
variance

Problem #1: Importance Sampling

Problem #2: Stratification



Stratification

Problem

▪ Variance of average of iid samples always converges 

with 𝒪 𝑛

Hence

▪ Non-independent sampling

▪ Targeting samples

▪ Goal uniform coverage

▪ Divide Ω in regions („strati“)

▪ One sample point per region



Jittered Sampling

Example: „Jittered Grid“

▪ Divide Ω in regular grid

▪ For example: subpixels

▪ Random point per cell

▪ Rest of the algorithm
unchanged

Improved versions

▪ Poisson-disc sampling

▪ Halton sequences

▪ Combination with importance sampling
& adaptive sampling



Consequences

Looking at one pixel

(c.f. Mitchel: „Consequences of Stratified Sampling in Graphics“, Siggraph 96)

Random image

𝒪 𝑛
−
1

2

sharp edge

𝒪 𝑛
−
3

4

smooth image

𝒪 𝑛−1

(Lipschitz-smooth)



Example: sharp boundary

Standard MC-Integration

Stratified 𝑛 = 𝑘2 :

purely random

stratified

k regions,
n = k2

Var
1

𝑛


𝑖=1

𝑛

𝑓 𝑥𝑖 =
1

𝑛
Var 𝑓 𝑥𝑖 ⇒ 𝒪 𝑛−

1
2

Var
1

𝑘2


𝑖=1

𝑛

𝑓 𝑥𝑖

=
1

𝑘4


𝑖=1

𝒪(𝑘)

Var(𝑓(𝑥𝑗𝑖)

≤𝑐 (const.)

+ 

𝑖=1

𝒪(𝑘2)

Var(𝑓(𝑥𝑗𝑖)

=0

=
1

𝑘3
𝑐 ∈ 𝒪 𝑛−

3
2 ⇒ 𝜎 ∈ 𝒪 𝑛−

3
4



Example

random rays (per pixel) jittered grid



random



jittered grid



Combination

Combination of Stratification & Importance

▪ Varying sampling density

▪ Example:

▪ 1D grid morphed according to distribution function

▪ Tensor product grid (i.e., apply to x and y coordinate)

▪ Adaptive jittering


